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General solutions for the linearized three-dimensional unsteady motion of a 
relaxing gas, including the effects of direct heat addition, are obtained using a 
Green’s function technique. The possibility of direct heat addition into each 
separate mode of energy storage must be catered for, and the solutions have some 
bearing on the question of the heating of a gas by radiation. 

Examples are given of initial-value and heat-source solutions in an unbounded 
domain and the boundary-value problem is exemplified by a study of the motion 
created by a spherical piston. 

1. Introduction 
Solutions for the linearized flow of a relaxing gas have previously been obtained 

for a variety of different situations, but not so far for the general case of three- 
dimensional unsteady motions. The present paper is therefore directly concerned 
with this case and, using the Green’s function approach, derives results of con- 
siderable generality. 

The opportunity has also been taken to include the possibility of direct heat 
addition to the gas, assuming that the heat addition terms are known functions 
of space and time. For simplicity we shall only deal with one relaxation process 
so that the pure gas is assumed to carry communicable energy in the translational 
mode of molecular motion, and in one (relaxing) internal mode. The existence of 
these two modes of energy storage makes i t  necessary for us to distinguish between 
the possibilities of direct heat addition into each mode separately. Aside from 
the inhomogeneous term (which will be found to arise from heat addition), the 
basic non-equilibrium equation for the potential function has been established 
previously in quite general terms (e.g. Vincenti 1959). A t  the risk of being a 
little repetitious therefore, we have re-derived the equation in some detail in 
order to  bring out as clearly as possible the role of (and the assumptions made 
about) the heat addition terms. 

One may question the practicality of the direct heat addition idea, and indeed 
we have something to say about this matter in relation to the translational states 
in 9 6. With regard to the internal mode, however, we may readily excuse the 
notion by appealing to the physical ideas behind the radiant heating processes 
which take place in a gas. Briefly, we can take it that the capture of a photon by 
a gas molecule will lead, in the first instance, to a change in that molecule’s 
internal state. The subsequent (collisional) relaxation processes will then distri- 
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bute this internal mode energy throughout the gas. It goes without saying that 
the true state of affairs in a radiating gas does not generally admit the possibility 
of our knowing the form of the heat addition terms at the outset; they are indeed 
most intimately connected with the behaviour of the gas itself. We can perhaps 
excuse the present idealization by viewing it as a small step in the direction of a 
more complete and detailed treatment of the non-equilibrium radiation problem 
in gas-dynamics. 

Some special cases of the general solution are considered at  the end of the paper. 
The unbounded-domain Green’s function is derived (using integral transform 
methods) and in consequence the initial-value and heat-source problems in a 
gas devoid of solid boundaries can be taken as solved. To illustrate the boundary- 
value problem, the simple case of a spherically expanding piston is considered. 
The Green’s function necessary for this solution is found directly by integral 
transform methods. 

2. The basic equations 
The five basic conservation equations, namely those of mass, momentum and 

energy are, in order, 
*+pv.u Dt = 0, 

Du 1 -+-vp = 0, 
Dt P 

De P -+-v.u = q. 
Dt P 

where DIDt is the usual convective operator and V is the (vector) gradient 
operator. p and p are pressure and density respectively, u is the velocity vector 
and e the specific internal energy; q is the total quantity of heat added per unit 
mass of gas per unit time. On the assumption that the gas molecules have but one 
internal energy mode, we shall write the caloric equation of state in the form 

e = C,,T,+C,T,. 

The thermal equation of state is 
p = pRT,. 

T, and T, are the translational- and internal-mode temperatures respectively; 
they are not equal in general. C, is the specific heat of the internal energy mode 
whilst C,, is the specific heat a t  constant volume of the translational mode of 
motion. We assume that both quantities are constants. R is the gas constant for 
the particular (pure) gas in question. 

Equations (1) to (5) inclusive represent seven equations for the eight unknown 
quantities p ,  p, TI, T,, e and u, so that a further equation is required. This is the 
relaxation equation and, because of the slight degree of novelty arising from the 
possibility that heat may be added directly to the internal mode alone, we shall 
go into the details of its derivation here. One method is as follows. 
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Let ni be the number density of gas molecules in an internal quantum state i. 
The continuity equation for molecules of this type can be written in the form 

Dn,/Dt + ni V. u = f i i  (6) 

(see Clarke & McChesney 1964, equation (5.3.7)). fii is the number-rate of 
production of molecules in state i per unit volume per unit time and diffusion 
effects have been neglected. If ei is the (constant) energy in the internal quantum 
state i we can multiply (6) throughout by ei and sum over all the allowable states. 
Then we can write 

ei ni = pe,  = pC, T,, (7) 

where e2 ( = C, T,) is the total energy contained in the internal mode in unit mass 
of gas (see (a), et seq.). Using expression (7) in (6) and making use of (1) it is easy 

i 

to verify that 1 De2 __- - - ei &. Dt P i 

The right-hand side of (8) represents the total rate of gain of energy by the 
internal mode per unit mass. We divide up this latter quantity into two parts. 
The first arises from excitation of the internal mode by molecular collisions, with 
a relaxation time 7' (assumed constant). This part may be adequately represented 

{e,(T,) - dT2))h' = CdT, - TzW. by the expression 

The second part is just the heat added to the mode per unit mass per unit time, 
which we write here as qz, assuming it to be a known function in the same way as 
q in (3) above. 

It follows that the desired relaxation equation is 

T'DT,/Dt + T2 - T I  = fq2/Ca. (9) 

c,, - c,, = R, ~,,/C,, = Y1, (10) 

Now if C,, is the specific heat of the translational mode at constant pressure, 
so that 

we can rewrite (4), with the aid of ( 5 ) ,  in the form 

Using (1) it  follows that (3) can be re-expressed in the form 

DT2 g i  OP + u p .  * + C,(y, - 1) = (y, - 1) q, 

where we have written a? = YlPIP, (13) 

and uf is the frozen speed of sound. 
Without going into the details, one can now use (3), (4) and (9) to eliminate the 

translational temperature TI and, subsequently, use (12) to  eliminate the 
remaining derivatives of T,. The result is the following equation: 

(14) 

14-2 
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Equation (23) for the dimensionless disturbance potential therefore has the form 

L[$] = -4nQ. (27)  

The Green's function G(r, t I ro, to), representing the effect a t  a field-point r, t 

L[G(r, t [ r,, to)] = - 4nS(r - r,) S( t  - to),  ( 2 8 )  

whilst the adjoint Green's function d(r ,  t I ro, to) is found by solving the adjoint 

(29) 
equation Qd(r, t [ ro, to)] = - 471-41- - ro) S( t  - to). 

6 is the Dirac function and, in particular, S(r - ro) is its three-dimensional form, 
defined so that 

arising from a source located a t  a source-point r,, to, satisfies the equation 

/ f W  - ro) dr = f (ro) ,  

when the integration is taken over a volume in r co-ordinates which includes the 
point r = ro. 

Now consider the expression 
d L[#] - # E[G] .  

QL[$~]  - #E[d] = @/at + v.  P, 

By writing out the expression in full and re-grouping the terms it can be shown 
that 

(30) 

P = - OW( a$4/at + $4) - #V( adpt - d ) .  (32) 

Equation (30), which is an appropriate generalization of Green's theorem 
applicable to the present problem, can now be used to establish a reciprocity 
relation between the functions G and d .  To do this, multiply (28) by d(r ,  t I r,, t,) 
(note the new source co-ordinates r,, tl) and subtract from the resulting quantity 
the product of G(r, t I ro, to) with (29) re-written with r,, t, in place of ro, to. Now 
integrate the result over a fixed volume V ,  which includes the ends of the source- 
point vectors ro and r,, and over a time interval from t = --a to t ' ,  where t' > to 
and t,. We find that 

= - 4 n j "  dt! dr{d(r, t I r,, t l )  S(r - ro) S( t  -to) - G(r, t 1 ro, to) S(r - rl)  S ( t  -t,)> 

(33) 
The last result follows from the property of the &functions and the fact that 

r,, r,, and to, t, all lie within the regions of integration. Now the first integral in 
(33) contains terms in braces which can be replaced by the expression 

- w  v 
= - 477{Q(r0, to I rl, tl) - ~ ( r ~ ,  t, I ro, to)>. 

@[d(r,  t I rl, tl), G(r, t I ro, to)l/at + V. P[G(r, t I r,, t,), G(r, t I ro, to)], (34) 

from the result written out in (30). We should point out that (30) has been (quite 
legitimately) modified to the extent that $4, which is there a function of r and t ,  
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has been replaced by G written as a function of r and t and the $xed source 
co-ordinates ro, to. This fact has been indicated in expression (34) by writing in 
the functional dependence of the scalar and the vector P on the appropriate G 
and f? functions. 

Putting expression (34) into the first integral in (33), we can perform the 
integration over t on the term @/at and, noting that the remaining expression 
involves the volume integration of the divergence of a vector, use Gauss’s 
theorem to replace this integral by an integration over the surface S (which 
surrounds V )  of the outward normal component of the vector P. The result is 

+Jrm d t S s  * P[Q(rS, t I rl, ti), G(rs, t I ro, t o ) ]  ds 

= - 477@(r0, to I rl, tl) - W1, tl I ro, to)>. (35) 

n is the unit outwards normal vector to the boundary surface S and rs is the value 
of r on this same surface. We note that n is not a function oft; S is ajixed surface. 

Now on physical grounds G(r, t 1 ro, to) must satisfy a causality condition; i.e., 
there can be no effect felt a t  a time t earlier than the time to at which the source 
was initiated. In  other words, G(r, t I ro, to)  and all of its derivatives must vanish 
for t < to. The adjoint function d(r, t 1 r,,t,), since it satisfies a ‘time-reversed’ 
equation, must on the other hand vanish identically for all t > t,. Thus the first 
term in the first integral of (35) vanishes because t’ > t, and f? = 0, whilst the 
second term vanishes because -co < to and G = 0. 

Taking note of the definition in (32), the integrand of the second integral in 
(35) can be written as 

-dn.V(G+aG/at)-Gn.V(ad/at-@. 

n . V  represents a differentiation normal to the boundary surface S and the 
expression is evaluated for r = rs. We note that the operators n . V and ajat are 
commutative. Thus if n. VG = 0, then n. V(aG/at) = 0 too, for example. It can 
now be seen that if either G and d or n , VG and n . V d  are zero on the surface S, 
the integrand is zero and (35) yields the reciprocity relation 

d(r09 ‘0 1 r17 tl) = G(rl? t1 1 r07 to)* (36) 
To summarize, (36) will be true if G and d satisfy a causality condition and either 
homogeneous Dirichlet or homogeneous Neumann conditions on the boundary 
surface. Just which of these latter conditions should be chosen will be decided 
by the form of the boundary-value data for the potential q5,  as we shall see in $7. 

It is now possible to set about the task of finding the general solution for q5 in 
terms of the Green function. During the course of this procedure it will become 
apparent what sort of initial and boundary-value data on q5 is necessary in order 
to completely specify any given problem. First of all we define the following 
functions, 

which satisfy the equations 
Lo[$,] = - 477Q0; zO[g,] = - 4778(r - ro) 8(t - to), (37b) 
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where Lo and 5, are the operators L and x (defined in (25) and (26)) in terms of 
ro, to rather than r, t co-ordinates. Qo is the function Q (see (24) and (21)) in ro, to 
rather than r, t co-ordinates, and we recall that the &function is an even function 
of its argument. 

Using (37b) it is easy to see that 

where the integrations (as shown) are taken over the ro, to space. The upper limit 
for to is taken as t + to ensure that we integrate 'right across ' the &(t - to) function. 
Using (30) re-expressed in to, to co-ordinates to eliminate the curly bracket terms 
on the left-hand side of (38) we find that 

dro{Po(to = t + ) - Po(to = 0) )  + 1; + dt, jso no. P; aso 

4nq5(r, t ) ,  
0, 

if t > 0 and r is in V,, 
if t -= 0 or r is not in V,. + 4nJ:+ dt0J dro(GoQo) = { 

P" 

Here Po and Po are P and P (see (31) and (32)) expressed in terms of q50, Go, ro 
and to. 8, is the surface bounding the volume V,, and no is the unit outwards 
vector normal to this (fixed) surface. Pt is the value of Po when ro = 9. Since Po 
contains Go = a(ro, to I r, t) it follows from the causality condition that Po(to = t + ) 
is zero. 

Confining attention to the case t > 0 and r in V,, it  follows that 
n 

In  deriving (39) we have made use of the particular form of the reciprocity 
relation (36) which reads 

(40) 

and we have written in the explicit functional dependences of Po and Po on the 
quantities q5 and G. The various terms in (39) show that $(r ,  t )  depends on the 
initial conditions (1st integral), the boundary conditions (2nd integral) and the 
distribution of sources throughout V, (3rd integral). 

Referring to (32), which defines P, we see that if the boundary conditions on q5 
give $(r& to) as a known function of r; and to, we should choose G(r, t I r;, to) = 0 
on 8, whilst if the boundary value data on q5 is of the form no. Vo #(I$, to) as a given 
function of r; and to, we should choose no. VoG(r, t I r;, to) = 0. Together with the 
causality condition, this information is sufficient to determine G and hence, 

Go = G(ro, to I r, t )  = G(r, t I ro, to), 
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through (39)) the function q5. We note that the data on G is given in r,, to co- 
ordinates, so that we should use the second of equations (37 b )  together with the 
reciprocity relation written out in (40) in order to find G. That is to say, we should 
solve the equation 

with the conditions just discussed, t o  find G. 

x,[G(r, t I r,, to ) ]  = - 4778(r - r,) 8(t - to ) ,  (41) 

4. Unbounded domain Green’s function 
In this section we shall derive the Green function for an unbounded, three- 

dimensional domain. To distinguish it from the more general function G, used 
above, we shall write it as 

satisfying the equation (see (41) and (26)), 

(42) 9 = g(r, t I ro, t o ) ,  

We now define S, the Fourier transform of g, so that 

Taking note of the fact that g must be zero for to > t > - 00, we can assume that 
lgl < A e-&’to for some s’ > 0 as t,-+-00, where A is some positive constant. 
Convergence of the integral for 0 as to -+ - 00 is then secured if 5 has an imaginary 
part -is such that s > s’ > 0. Then g can be found from the inversion formula 

Multiplying (43) by eicto/J( 277) and integrating with respect to to from - co to 
+a, it  can be shown that 0 satisfies the following equation, 

Vt 0 + x2g = 47rfs(r - r,), (46) 

where (47) 

Before proceeding to solve (46)) let us investigate the behaviour of as 
Ir, - r[ -+ 0. Integrating over a small spherical volume surrounding the field 
point r and using Gauss’s theorem to  deal with the first term, we find that 

where V, g is the vector gradient of g and ds,  represents the (vector) element of 
surface area. The result on the right-hand side arises from the properties of the 
function 6(r - r,). The function @ will be independent of the spherical polar 
angles, i.e. it will depend only on R = Ir, - rl, so that V, 0 will be in the radial 
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direction, parallel to ds,, and will have the same magnitude everywhere over the 
surface. Thus the first integral in (49) will be equal to dg/dR times the area of the 
sphere, namely 47rR2. It is apparent that as R -+ 0 the second term in (49) becomes 
negligible and we find that 

or, finally, 

In  setting out to solve (46) it will be convenient to move the origin of co- 
ordinates to the field point r and to define the spherical polar co-ordinate system 
R = Ir,-rl, w, and a,, where 0 < w, < 277 and -471 < 8, < in. A volume 
element in this system is given by R2 cos 19, dR d.8, dw,, and we infer that 6(r - r,) 

26(R) 6(8 - 9,) 6 ( ~  - 0,) must take the form 

R2 c&%, 

in this system. Multiplying (46) by cos 8, d8, dw, and integrating over 0 to 27r in 
oo and - to +7r in 9, leads to the result that 

We have again made use of the fact that S is not a function of w, or 8, in the 
unbounded domain, and have written out the remaining part of Vi  in full. It is 
more convenient to solve for Rg rather than g alone, and it is easy to show that 

d2 36( R) 
~ (Rg) + x2(Rg) = __ f .  dR2 R (53) 

The general solution of ( 5 2 )  can be written down as follows 

since the Wronskian of the homogeneous solutions is - i2x. It remains for us to 
select the two 'constants' A and B and the appropriate limits for the two 
integrals involved in such a way as to give a solution of g which not only behaves 
like (50), but also satisfies the causality condition. The latter can be effected by 
dropping the terms in eiXR, i.e. by setting B = 0 and choosing, say, +co for the 
lower limit in the last integral of (53). This integral then vanishes for all R > 0 
because 6(R) is zero in these circumstances. In  the first integral of (53) we shall 
choose the lower limit to be -a, so that we have to deal with the solution 

Expanding eixa, we readily see that 
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The first term of the integral in (54) vanishes because it is an integral of an odd 
function, and all the terms in an vanish because n 2 2. The result is as written 
in (55) (remember R > 0); comparing it with condition (50) we see that A must be 
zero and the desired solution for S is simply 

g = f e - ixR  ( 5 6 )  R 

Using (45) and writing out f and x in full (see equations (47) and (48)) gives 
for all R > 0. 

We remark that throughout x is taken to be that root of x2 which behaves like 
+4161 as 6++co. 

5. The behaviour of g 

Equation (43) can then be written as 
As a check on the result given for g above, consider the special case a = 1.  

It follows that - ag/ato + g should be the same as the Green function for the 
familiar scalar wave equation. We see that 

(58) 
1 
R 

= - - 8 ( R - ( t - t o ) ) ,  

which is indeed the result that we should expect. 
Returning to (57), we observe that the contour f co  - i s  can be closed in the 

lower half of the 6-plane by a semi-circle of infinite radius without surrounding 
any singularities of the integrand. Accordingly, we can re-write 

9(r9 t I ro, t o )  = A/::+ exp{[i cose - 161 sin 61 [ ( t  - to)  - R] - &(a2 - 1)  R} 

x { 1 +O(i))idO 

as 151 -+a (N.B. 6 = 161 eio),  It follows that g is zero for all to > t -  R. Thus g 
satisfies the causality condition because R > 0. In  addition, we note that the 
wave-front is of spherical form about the source point ro and travels with ‘unit 
speed’ (i.e. at the frozen sound speed afm, in dimensional terms). 

Expanding parts of the integrand of (57) in inverse powers of 6 enables us to 
write 

exp{ - i[[R - ( t  - to)]}exp{ - &(a2- 1) R} (1 + 0 6 ) )  (1 -;)-IF, 

so that when R -+ ( t  - to )  from below 
exp { - L(a2-  1) R} 

R 
g + - .-2. . (59) 
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The spherical wave-front expanding with unit velocity around the source point is 
therefore in the nature of a step function. The amplitude of the step decreases as 
a result of both spherical attenuation (the factor R-l) and relaxation attenuation, 
or absorption, as summarized in the term exp [ - $(a2 - 1) R]. 

If we re-arrange the integral in (57) so that 

it can be shown that the function multiplied by R in the exponential has B saddle 
point at  < = 0 which yields the dominant contribution to g. The method of 
steepest descents then gives 

1 exp { - [aR - (t - to)12/2R(a - a-l)} g w - - -  ~- _. __ 
Rt J{ 2n( a - a-I)} 

as R --f co in the vicinity of a R  - (t  - to) = 0. The latter relation represents the 
location of a spherical front which expands from the source point with the 
equilibrium sound speed a-l, in terms of the unit speed, or a,, in terms of 
dimensional speeds. 

The two results exhibited in (59) and (60)  show that, after a sufficient lapse of 
time, the potential function arising from the source differs from zero throughout 
a sphere of radius R = t - to, with its peak value occurring where R = ( t  - to)/a. 
It is interesting to note that the amplitude of this peak decays like R-8; in other 
words, the usual spherical attenuation is reinforced by the absorptive relaxation 
processes which are of a ‘square root ’ character in this region. 

The case a = 1 considered above has given us (in (58)) the Green function for 
a non-dispersive, non-absorbing medium and we note the contrast between its 
behaviour and the behaviour of g in the relaxing gas case. In  the first place the 
relaxation processes spread the disturbances from the source throughout the 
whole sphere R = (t- to),  instead of them being confined within the infinitesi- 
mally thin shell, as in the case a = 1. In  the second place, the quantity R times 
the Green function is finite for all t > to in the relaxing gas case, although a hint 
of the original &function input remains at the location R = (t  - to)/a, as is shown 
by the result in (60) for large times after initiation of the source. We note that 
(57) gives 

SO that the potential in the vicinity of the source subsides exponentially with 
increasing time back to a final value of zero as ( t  - to) -+ co. 

Some physical interpretation of g can be derived from (39). If there is no 
boundary surface Xo and if the system is initially quiescent (so that #(r, 0) and 
all of its derivatives are zero) the first two integrals vanish and we are left with 

(61) ( Rg)R-+o -+ - e-(i-io) ( t > t , ) ;  

r t+ r 

If Qo(r0, to) = S(ro) 8(to + ) it  follows that 
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and g can be identified as the potential produced by a S-pulse of heat. Referring 
to the definition of the function Q (( 21)  and ( 2 4 ) ) ,  it  can be seen that, if q = q,, then 

Qo = 7(ye - 1 )  q2(ro, t0)/47@L 

and the S-pulse of heat is a pulse added to the internal mode only. Consequently it is 
this form of heat addition which gives rise to the fundamental type of source flow. 

6. Motion in the unbounded domain 
When there are no solid surfaces present in the field of flow the general solution 

for the potential is given by the first and third integrals of (39) only, with the 
general function C replaced by the function g discussed in the two previous 
sections. In  order to illustrate solutions of this type we shall deal briefly with two 
special cases. First, we shall examine the source-free field (Q, = 0) which results 
from prescribed initial conditions and, secondly, we shall look at the field created 
by a distribution of sources initiated at the time t = 0 + in a quiescent gas. 

The first problem is of the initial-value type, and its solution is 

4 n # ( r 9  t ,  = - pO{$(r07 O)7 g(r7 I rO, 0 ) } d r 0 7  ( 6 4 )  s 
where the integration extends over all space. Writing out the scalar function Po 
in full (see (3 1 ) )  gives 

47rq5(r7t) = - j" g-+q5 O a t ;  - - - - + a ,  a2g adas at, at, [ g - - $  at, Oat, - " 1  + V  0%v0q50]dro, 
(65) 

where all the quantities inside the braces are evaluated at time to = 0. It is 
apparently necessary to specify all of q5,, &$,/at,, a2q5,/8tt and V0$, at this time 
and for all ro in order to solve the problem. 

From the definition of q5 it  is clear that specification of aq5lat and Vq5 is equi- 
valent to prescribing the values of the pressure and velocity perturbations, 
respectively. In  order to identify a2q5/8t2 we can return to ( 1 2 ) .  Putting q and q, 
equal to zero in ( 1 2 )  and (9), linearizing and non-dimensionalizing as in 5 2, it 
readily follows that 

Therefore it can be seen that the value of a2q5/at2 is intimately connected with the 
difference between Tl and T,. In  other words, with the extent of the lack of 
equilibrium at any particular place and time. 

Naturally one cannot select the initial values required in (65) with complete 
arbitrariness, for choosing &r0, 0 )  will fix 8, q5(ro, 0) and hence V; $(r,  0). Then, 
through (SS), the value of a2q5/ati will be influenced by the choice of initial values 
for Tl and T,. The selection of a value for aq5,/at, remains open, however. 

An interesting case occurs if we choose q5(ro, 0 )  = 0 = a4(ro ,  O)/at,. It follows 
from the first of these that V, &r,, 0) = 0 = Vi q5(ro, 0), and thence from (66) that 
the choice of P$(ro, O)/at; is equivalent to the choice of a particular degree of 
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out-of-equilibrium a t  the initial instant. The initial field is one of zero velocity 
and pressure perturbations and, if Tl should equal T, as well, it is clear that 
#(r ,  t )  = 0;  i.e. the initial field is in equilibrium and remains so for all time. In 
general , however , 

4n#(r, t )  = - 1 g  %odro, at; 

and if we select a2#0 

at; -- = - 4n8(ro), 

it  follows that m - 7  t )  = g(r7 t I 0, 0). (68) 
The similarity between this result and that in (63) above is apparent, and we 

identify the addition of a 8-pulse of heat into the internal mode alone with a value 
of T, instantaneously an infinite amount greater than the initial, ambient, value 
of Tl at some isolated point in the field (see (66)). 

We have already written down the solution for the potential of a field created 
by a distribution of sources from a quiescent state, existing prior to t = 0,  in (62) 
in the previous section. To reiterate 

When q = q2 the potential depends on q only, as we have seen, but if q + q, and, 
in consequence, some heat is added directly to the translational states, then # 
depends also on how rapidly the rate of heat addition to these states varies with 
time, as witnessed by the appearance of the term a(q - q,)/at in Q. 

Whilst it  is comparatively reasonable to visualize the direct gain or loss of 
energy from the internal mode as a result of some photo-process, the corre- 
sponding physical processes which lead to direct changes of translational state 
are somewhat more difficult to describe in the context of the present theory. 
Usually q - q, is ascribed to an idealization of the local heat release by chemical 
reaction, but to do so in the present case would hardly be warranted, since a 
reaction is itself another relaxation-type of process and should, strictly, be 
included as such in our theory. We shall not pursue the case q + q, any further 
for these reasons, merely remarking in conclusion that if it  should be found that 
the idealization referred to is physically acceptable, (63) provides the desired, 
infinite domain, solution. 

7. The spherical piston problem 
We shall end with a discussion of a simple problem involving the presence of a 

solid surface in the flow field. With conditions of initial quiescence and no heat 
sources in the field, (39) shows that 

a 
4 n W ,  t )  = -17 dto/so G(r ,  t I G, to)  no. Vo[#(G, to)  + at, #(G, to ) )  dso, (69) 

( 70) 

(71) 

provided that no. V, G(r ,  t I r;, to) = 0. 

If the boundary surface Xo is a sphere with centre at  ro = 0, i.e. 
r9 0 -  - Rs = const., 
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then no. U, becomes simply - a/ar, if we consider the field external to X,. In the 
case of the problem whose solution is given in (69) and (70), we need to prescribe 
a#,/ar, on ro = R", so that in physical terms we are dealing with the case of a 
spherically expanding or contracting piston. Let us write 

!!!? = U(t,)H(t,) when r, = r; = Rs, 

-- a 2 ~ ~  - ~ ' ( t , )  ~ ( t , )  + U ( O )  &(to) (ro = R"). 

(72) 
ar, 

where U(t,) is a finite continuous function of to and H(to)  is the unit step function. 
It follows that 

(73) irr, at, 

From physical considerations the solution must be independent of the 
spherical polar angles, i.e. it  must depend on r only. We can therefore look for a 
value of G which satisfies (41) (in which only the r,-derivatives in the operator zo 
survive) along with the condition 70 and the condition of causality. If we write 
B for the Fourier transform of G in the same way that Q stands for the transform 
of g (see (44) and (45)), this means that satisfies the equation 

(x2 and f are defined in (47) and (48) respectively.) 

limits for the integrals so that the causality condition is satisfied, we can write 
The general solution of (74) is quite similar to (53) for S, and if we select the 

The 'constant' A must now be found so that condition (70) is satisfied; in parti- 
cular, aa/ar, = 0 when ro = R S  and r > r,, since we are dealing with the region 
exterior to the sphere r, = RS. It readily transpires that 

The particular value of B required in the soIution, (69), is found by letting 
r, -+ RS, and is 

Inverting the transform gives 

d6 3 (78) 
exp (i<( t - to) - ix(r  - RS)} 
.. - ~- G(r,  t [ R", t o )  = -__ 

( 6 - i )  ( 1  +ixRS) 

from which it follows that G = 0 for to 2 t - ( r  - R"). 
Since G and # are not functions of the spherical polar angles, the surface 

integration in (69) can be carried out and the solution can be written down as 
follows 
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An especially simple case occurs when U'(t,) = 0;  then 

223 

U(to)  = U ( 0 )  = U = const. 
and we find that 

This then is the potential for the flow created by a spherical piston expanding 
at a constant surface speed (contracting piston if U < 0 )  having started im- 
pulsively from rest at the initial instant. As such it is the three-dimensional 
analogue of the one-dimensional piston problem studied by Chu (1957). 

Some interest attaches to the jump in density which occurs across the wave 
head, located, as can be seen from (SO), a t  r = RS + t .  The linearized and non- 
dimensionalized version of (1) shows that 

in the spherically symmetric case. Since p = pm prior to t = 0 the arbitrary 
function F ( r )  must be zero. It can then be shown that 

Expanding the integrand for large and letting t - ( r  - Bs) -+ 0 from above 
shows that 

(82) 
P - P m  uRs 

PCZ r 
- -exp{-+(a2-l)(r-Rs)}; t-(r-Rs) = O + .  

The jump in density on crossing the wave head therefore decays exponentially 
with the time as a result of the relaxation effects and also like 1 / ~  as a result of 
spherical attenuation. We observe that in the early stages of the piston's expan- 
sion, when (Rs/r) N 1, the density behaves in the same way as it does in the one- 
dimensional case mentioned above, as indeed we should expect it to do. 
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